Q. Design Turing Machine for language $\mathrm{L}=\left\{0^{\mathrm{n}} \mathbf{1}^{\mathrm{n}} \mathbf{2}^{\mathrm{n}} \mid\right.$ $n \geq 1\}$

Solution:

Before designing the required Turing machine M, let us evolve a procedure for processing the input string 112233. After processing, we require the ID to be of the form $b b b b b b q_{7}$. The processing is done by using five steps:

Step $1 q_{1}$ is the initial state. The R/W head scans the leftmost 1 , replaces 1 by b, and moves to the right. M enters q_{2}.
Step 2 On scanning the leftmost 2, the R/W head replaces 2 by b and moves to the right. M enters q_{3}.

Step 3 On scanning the leftmost 3, the R/W head replaces 3 by b, and moves to the right. M enters q_{4}.

Step 4 After scanning the rightmost 3, the R/W heads moves to the left until it finds the leftmost 1 . As a result. the leftmost 1,2 and 3 are replaced by b.

Step 5 Steps 1-4 are repeated until all 1's, 2's and 3's are replaced by blanks. The change of IDs due to processing of 112233 is given as

$$
\begin{gathered}
q_{1} 112233\left|-b q_{2} 12233\right|-b 1 q_{2} 2233\left|-b 1 b q_{3} 233\right|-b 1 b 2 q_{3} 33 \\
\vdash b 1 b 2 b q_{4} 3-b 1 b_{2} q_{5} b 3-b 1 b q_{5} 2 b 3\left|-b 1 q_{5} b 2 b 3\right|-b q_{5} 1 b 2 b 3 \\
\vdash q_{6} b 1 b 2 b 3\left|-b q_{1} 1 b 2 b 3\right|-b b q_{2} b 2 b 3 \mid-b b b q_{2} 2 b 3 \\
\vdash b b b b q_{3} b 3-b b b b b q_{3} 3-b b b b b b q_{4} b \vdash b b b b b q_{7} b b
\end{gathered}
$$

Thus.

$$
q_{1} 112233 \vdash q_{7} b b b b b b
$$

As q_{7} is an accepting state, the input string 112233 is accepted.

Now we can construct the transition table for M.

Present state	Input tape symbol			
	1	2	3	b
$\rightarrow q_{1}$	$b R q_{2}$			$b R q_{1}$
q_{2}	$1 R q_{2}$	$b R q_{3}$	$b R q_{2}$	
q_{3}		$2 R q_{3}$	$b R q_{4}$	$b R q_{3}$
q_{4}			$3 L q_{5}$	$b L q_{7}$
q_{5}	$1 L q_{6}$	$2 L q_{5}$		$b L q_{5}$
q_{5}	$1 L q_{6}$		$b R q_{1}$	
q_{7}				

It can be seen from the table that strings other than those of the form $0^{n} 1^{n} 2^{n}$ are not accepted. It is advisable to compute the computation sequence for strings like $1223,1123,1233$ and then see that these strings are rejected by M.

